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Reactions in solid-liquid systems are often carried out in agitated vessels. For continuous flow 
operations the suspension is usually withdrawn by an overflow from the liquid level or in multi
stage column reactors from the bottom of the column. The movement of the liquid inside the 
vessel is determined by the stirrer. At the point of outlet the liquid has to change its direction and 
velocity. The solid particles follow the path of the liquid with a certain amount of inertia and the 
concentration of solid particles at the outlet of the reactor in general differs from the average 
concentration of solid particles in the vessel. The ratio of these two concentrations is called the 
separation coefficient. In order to calculate the performance of such a reactor the separation 
coefficient has to be known. 

Mattern, Bilous and Piret! measured the separation coefficient in a stirred vessel with an 
overflow from the liquid level. Rushton2 tried to describe this effect quantitatively. For measuring 
the separation coefficient he used a Simplified geometry of the outlet, the so called "isokinetic 
arrangement" where the outlet stream from the vessel does not change its direction but only its 
velocity. The arrangement according to Rushton is shown on Fig. 1. For calculating the separation 
coefficient Rushton used empirical equations which are valid only for the system water-glass 
and water-sand. 

This contribution is an attempt to theoretically describe the separation effect for the isokinetic 
withdrawal from a stirred vessel. A theoretical treatment of the simple isokinetic withdrawal 
of a suspension could in the future be used as a guide for determining semi-empirical cOffelations 
for calculating the separation coefficients for suspensions withdrawn from the more geometrically 
complicated outlets from an overflow or from the bottom of vessels as employed in the industry. 

THEORETICAL 

Let us first of all consider the case where the linear velocity of the suspension in the outlet is 
higher than the linear velocity inside the vessel. 

Similarly to Rushton we assume an isokinetic arrangement and a homogenous suspension 
inside the vessel. With these assumptions we can describe the outlet of the suspension simply as 
flow from a pipe of larger diameter Di to an outlet opening of diameter De' Di is a hypothetical 
diameter of the suspension stream inside the vessel as it approaches the outlet opening. It can be 
calculated from the equation of continuity as 

(1) 

If we further assume that the paths of the liquid and solid particles are straight lines, we can 
draw a simplified diagram of the flow paths as shown in Fig. 2. The full lines are the flow paths 
of the liquid and the dotted lines are flow paths of the solid particles. The solid particles follow 
the liquid paths with inertia. A certain part of the suspension stream does not enter the outlet 
opening. If we denote by x the radial distance of a solid particle from the wall of the hypothetical 
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pipe, then according to Fig. 2 the condition for the solid particle to reach the outlet opening 
can be written as 

x / a ~ Ils, (2) 

where 

(3) 

For the width of the annulus X which contains particles that do not enter the outlet 

X/a = Ils, (4) 

so that for calculating the separation coefficient we can use the equation 

(5) 

In calculating Ils we can use the equation for the movement of a solid spherical particle as em
ployed by Badzioch3. If we furthermore consider that the resistance to particle movement obeys 
Newton's law and that the effect of gravity can be neglected we obtain the expression 

(6) 

According to Hinze4 the friction factor'll in a turbulent medium and suspensions of small concen
tration depends on the ratio of the particle diameter to the characteristic scale of turbulence. 
According to this theory we introduce the simplifying assumption that the friction factor can be. 
expressed as 

FIG. 1 

Isokinetic Arrangement According to Rush
ton 
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FIG. 2 

Suspension Flow for a Velocity Ratio 
ue/Uj > 1 
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where the constant k1 is a function only of the geometry of the system and the outlet diameter 
has been chosen as the characteristic scale of turbulence. By using Eq. (7) we can rewrite Eq. (6) as 

(8) 

where 
(9) 

Assuming that the radial liquid velocity is constant and that the radial solid particle velocity 
changes from 0 to vp we can integrate Eq. (8) to give 

(10) 

The solid particle path can then be calculated by integrating Eq. (10) 

(11) 

Eq. (11) can further be rewritten as 

(12) 

The liquid path Sk is a function of the annulus width X. From Fig. 2 it can be seen that this 
function is 

Sk = (DJ2) - X - (De/2) - (X/ a) . (13) 

By a combination of Eq. (3), (12) and (13) and substitution into Eq. (4) we obtain after rearrange
ment and expression for the annulus width 

If we know the value of the constant k, we can solve Eq. (14) by trial and error. The vaiue of X 
thus calculated is substituted into Eq. (5) and the separation coefficient is determined. 

In case the linear velocity of the suspension in the outlet is lower than the linear velocity inside 
the vessel, the flow between the two pipes is more complicated. A part of the liquid stream flows 
past the wider pipe and we must make assumptions to what extent are the liquid flow paths 
influenced by the exit. ' 

The outlet of diameter Dc will contain all particles originally present outside the diameter D j • 

If we denote the width of the annulus Yas that part from which the particles enter the outlet 
tube, we can write for the separation coefficient 

(15) 

By similar arguments as in the previous case we can derive from the geometry of the flow 
paths that 

Sk = De/2 + Y/a - DJ2 + Y, (16) 

which applies for the case where the liquid in the annulus of original width Y is retarded at the 
.same rate as the liquid leaving the vessel. Then 

Yltue/uj)1 /2 = (I l k) In (k{(De/2) [1 - (ue/u)1 /2] + Y[(uJuc)1/2 - I]} + 1). (17) 
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DISCUSSION 

From the previous theoretical considerations it follows that the separation coefficient depends 
on the geometry of the system, density of liquid and solid particles, diameter of the outlet and the 
ratio of velocities lie/IIi. In the limiting case when both velocities are equal the value of the separa
tion coefficient is equal to one. 

If the assumption regarding the value of the friction factor as given in Eq. (7) is correct, the 
separation coefficient should not depend on the diameter of the solid particles. All the previous 
considerations can bo valid only for systems where the diameter of the solid particles in comparison 
to the outlet diameter is sufficiently small so that no separating effects due to the impact of the 
particles on the outlet tube wall need be considered. In deriving the theoretical equations we 
introduced several simplifying assumptions . The assumption about the straight line path of the 
solid particles and the value of the friction factor are questionable. Eq. (6) could in theory also 
be solved for a curved path of the particles . The dependency of the friction factor on the relative 
velocities of the liquid and solid particles cou ld also be taken into consideration. The solution 
would then have to be carried out numerically in a similar manner as that used by Vitols5 in cal
culating the separation coefficient for the system gas-liquid . The solution is, however, very time 
consuming and all the assumptions cannot be eliminated anyhow. In the experimental part 
of this work it will be shown that the simplified model is adequate for calculating values of the 
separation coefficient within reasonable accuracy. 

LIST OF SYMBOLS 

Ce solid particle concentration at the vessel outlet (ML - 3) 

ci· solid particle concentration inside the vessel (ML - 3) 

D vessel diameter (L) 
D\ hypothetical diameter of the entering stream of suspension defined by Eq . (1) (L) 
Dc diameter of outlet (L) 
dp diameter of solid particles (L) 
k constant in Eq. (8) (L -1) 

k 1 constant in Eq. (7) 
sk radial component of the liquid path (L) 
sp radial component of the solid particles path (L) 
!o.s difference of radial components of the liquid and solid particles path (L) 

time (t) 
lie linear velocity of the suspension in the outlet (Lt - 1) 
IIi linear velocity of the suspension inside the vessel in the vicinity of the outlet (Lt- I ) 

vk radial component of the liquid velocity (Lt -1) 

vp radial component of the solid particles velocity (Lt- I
) 

X width of annulus containing particles which do not enter into the outlet (L) 
radial distance of the solid particles according to Fig. 2 (L) x 

Y width of annulus containing particles which enter the outlet (L) 
radial distance of the solid particle accord.ing to Fig. 3 (L) 
coefficient defined by Eq. (3) 

y 

Cik liquid density (ML - 3) 

Clp solid particle density (ML -3) 
rp separation coefficient 

friction factor 
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In a previous paper 1 equations were derived for the value of the separation coefficient (ratio 
of the solid concentration in the outlet to the average solids concentration in the vessel) for the 
isokinetic withdrawal of a suspension from a stirred vessel: These are 

where X is determined from 

and 

X/(Ue/Ui)1/2 = (I/k) [(C?p - Qk) De/C?k]In ([kek/De(C?p - C?k)]' 

. {(De/2) [(uc/ul/ 2 - 1] + X[(u;/ue)1/2 - l]} + 1) 

where Y is determined from 

Y/(Ue/Ui)I/2 = (I/k) [(C?p - C?k) De/(lk] In ([kC?k / De(ep - C?k)]' 

. {(De/2) [1 - ue/u)I/2] + Y[(u;/lIc)1 /2 - 1l} + 1). 

(I) 

(2) 

(3) 

(4) 

The constant k in Eq. (2) and (4) depends only on the geometry of the system. The aim of this 
work was to verify the validity of relations (1) - (4) and to determine the value of the constant 
for various physical systems and a given geometry. The experiments were performed with only 
one geometry of the system. The independent variables were: stirrer speed, volumetric flow rate 
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